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Control Theory

Control theory (Regelungstechnik): 
Theory of automatic, goal-orientated influencing of dynamic, time-dependent 
processes at run-time

Fundamental situation in control theory:
Design of a system for automatic, targeted influencing a process with 
incomplete system knowledge, in particular in the presence of disturbances

Methods of control theory are universally applicable, independent of the 
specific nature of the given system 
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Structure and Operation of a Control System

Task: 
The system output is to be influenced via the control input in such a way that a 
desired system behavior (i.e. system output) is achieved, despite a disturbance 
that is not or only partially known

Dynamical System
Dynamical Process

„Plant“Control input System output

Disturbance

u y

z y = 𝑆{u, z}
Operator, e.g. 

(differential) 

equation 
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Structure and Operation of a Control System

Principle of operation: 
The plant is to be observed continuously, and the obtained information is used 
to change the system input variable in such a way that its output variables 
matches the desired output as close as possible, despite the effects of the 
disturbance.

A system that can achieve this is called a closed-loop control system 
(Regelung).
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Structure of a Control System

𝑤 Reference 𝑥𝑑 Control error

𝑦 Control Input 𝑥 System output

𝑟 Feedback 𝑧 Disturbance

Controller

𝑥

Control System

PlantController Actuator

Sensor

𝑥𝑑 𝑦

𝑧

𝑟

𝑤
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Structure of a Control System

Target value of 𝑥: 𝑥𝑠
Measurement: 𝑟 = 𝐾𝑗 𝑥 𝐾𝑗 > 0 (constant) 

Selection of reference: 𝑤 = 𝐾𝑗 𝑥𝑠
Then:      𝑥𝑑 = 𝑤 − 𝑟 = 𝐾𝑗 𝑥𝑠 − 𝐾𝑗 𝑥 = 𝐾𝑗 (𝑥𝑠 − 𝑥)

Plant
𝑥𝑑 𝑦

𝑧

𝑟

𝑥𝑤
Controller Actuator

Sensor
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Operation of a Control System

Desired value of x: 𝑥𝑠

Reference value: 𝑟 = 𝐾𝑗 𝑥 𝐾𝑗 > 0 (constant) 

Measured value of x: 𝑤 = 𝐾𝑗 𝑥𝑠

Then:      𝑥𝑑 = 𝑤 − 𝑟 = 𝐾𝑗 𝑥𝑠 − 𝐾𝑗 𝑥 = 𝐾𝑗 (𝑥𝑠 − 𝑥)

Initial Situation:   𝑥 = 𝑥𝑠  𝑥𝑑 = 0 (stationary system)

𝑧 becomes larger  𝑥 decreases 

𝑟 decreases  𝑥𝑑 increases 

𝑦 increases  𝑥 increases to resemble the desired value 𝑥𝑠

In short: The disturbance is regulated.
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Operation of a Control System

The system output is changed to resemble the reference value, i.e. the output 

follows the reference value.

The control system is a closed loop: Closed loop control 

Essential: 

Feedback is SUBTRACTED from the reference

ydw

r
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Example: Car Steering as Control System

German original taken from: Regelungstechnik; O. Föllinger

ActuatorComparison 
and controllerDesired 

path

Sensor

Plant

Path

brain hand
steering 

wheel
car

eye

Measured 
path
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Definition: Control System

A control system is an arrangement that continuously observes the plant‘s output, 

computes the deviation from a reference value and uses this error to adjust the 

system output to match the reference.

This is achieved with only incomplete knowledge about the plant and, especially, 

about the disturbance. 
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Example: Speed control of a DC motor

German original taken from: Regelungstechnik; O. Föllinger

Converter Motor Load
Tacho-

generator

SensorPlantActuator

Amplifier

Deviation 
analysis Controller
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Example: Control in the Joint Angle Space

Control variables for the joint actuators are generated from the target and 
measured joint angles

Suffix 𝑡 for target, 𝑑 for desired 

𝒒: joint angles

𝒙: target in Cartesian space

Inverse 
Kinematics 

Controller
Motor &  

Transmission

Joint
Sensors

Robot Arm

𝒙𝒕

𝒒

𝒒𝒒𝒕

-

𝒒𝒅

𝒒𝒓
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Example: ARMAR-6

High Level: Computer
Central control of the joints
Position (e.g., from inverse kinematics)
Velocity (e.g., from inverse kinematics)
Torque (e.g., from inverse dynamics)
EtherCAT-Bus (1000 Hz)

Low Level: Motor Controllers
Control (up to 20 kHz) for 

PWM
current

Measurement of position, torque and current in the joint
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Example: ARMAR-6

Dynamical System

Output variable
(joint angle)

𝑥

Disturbance variable
(e.g. external forces)

Setpoint
(from computer)

𝑦 𝑧
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Example: ARMAR-6

Joint Angle 
Setpoint

Motor Controller Motor Forearm

Relative Encoder

Joint Angle

Comparison and 
Controller Actuator

Plant

Measuring Device
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Control Loop

Block diagram of a control system:

From physical laws, we can derive equations (differential or difference 
equations) that describe the relationships between time-varying 
quantities of the system.

The time-varying quantities and their equations are represented by suitable 
symbols.

A block in the block diagram uniquely assigns each time response of the input
variable to a time respones of the output variable, thus acting as a transfer 
element.
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Structure of a Control System

𝑤 Reference 𝑥𝑑 Control error

𝑦 Control Input 𝑥 System output

𝑟 Feedback 𝑧 Disturbance

Controller

𝑥

Control System

PlantController Actuator

Sensor

𝑥𝑑 𝑦

𝑧

𝑟

𝑤
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Information acquisition using sensors

“Digitize” sensor data

Algorithms of digital signal processing 

Convert processed signal back into an analog signal

Diagram of Digital Signal Processing Systems

Technical Process

(Robot)
Sensor Actuator

Input 

Amplifier

Output 

Amplifier

Sample-and-

hold circuit

AD/

Converter

DA/

Converter

Digital Signal 

Processor (DSP)

Digital Signal Processing System
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Input amplifier to amplify the sensor signal and convert it to the required 
voltage range

Sample-and-hold element for the periodic sampling of the input signal. The 
sampled value is held constant within a sampling period

Input amplifier with anti-aliasing filter to eliminate high interference 
frequencies from the sensor signal

The output amplifier smooths the signal from the DA converter 
(reconstruction filter)

Diagram of Digital Signal Processing Systems
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Signal as a physical carrier of 
information

A signal is a function of an 
independent variable 𝑡, which usually 
represents time. The signal is 
represented as 𝑈(𝑡).

Analog Signal: 𝑈(𝑡) is defined at 
every moment and can take any 
arbitrary value (signal with 
continuous values).

Continuous and Discrete Signals (1)

Time 𝑡

Voltage  𝑈(𝑡)

Analog Signal
Continuous in time and value
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Continuous and Discrete Signals (2)

Zeit t

Voltage U(t)

Analog Signal
Continuous in time and value

Sampling (temporal quantization)
Discrete time and continuous value

t

U(t)

t0 t1        t2 t3        t4 t5 t6        t7        t8       t9        t10 t11       t12

Sampling period
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Signal  𝑈(𝑡𝑘) with a 
finite number of 
different values

Important: Signals with 
two different values

Continuous and Discrete Signals (3)

𝑡

Digital value 𝑈(𝑡𝑘)

t0 t1        t2 t3        t4 t5 t6        t7        t8       t9        t10 t11       t12

Resolution

Amplitude quantization 
Discrete in time and value

0100

0011

0010

0001

0000

1010

1001

1000

0111

0110

0101
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Description of Dynamic Systems

Signals in the
continuous-time

domain

Spectral
Laplace domain 

Signals in the
discrete-time

domain

Spectral domain
z-domain

Laplace Transform

Z-Transform

Discretization/Sampling

f t F s

F zf tk
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Fundamentals of Control

Example: Position control for a robot joint

Input signal 𝑢(𝑡): Desired position (reference variable, setpoint)
Output signal 𝑦 𝑡 : Actual position (process variable)

Objective: Describe output signals for a given input signal

Procedure:
1. Description of the system with differential equations (or difference equations)
2. Transform into the frequency domain (Laplace)
3. Deriving the transfer function

𝑢(𝑡) 𝑦(𝑡)
Robot Arm
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Fundamentals of Control

Example: Position control for a robot joint

Input signal 𝑢(𝑡): Desired position (reference variable, setpoint)
Output signal 𝑦 𝑡 : Actual position (process variable)

𝑢(𝑡) 𝑦(𝑡)
Robot Arm
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Transfer Function: Application

Transform to the frequency domain (Laplace Transform)

𝐿 𝑢 𝑡 = 𝑈 𝑠 𝐿 𝑦 𝑡 = 𝑌(𝑠)

Transfer Function

G s =
𝑌(𝑠)

𝑈(𝑠)
=
Output

Input

The transfer function is important for the controller design:

Analysis of the system behavior with different input signals
→ Example: Stability analysis

Determination of the controller parameters
→ Optimization of the parameters for the given system
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Laplace Transform

Differential and integral expressions are replaced by algebraic expressions

Solving equation in the frequency domain instead of the time domain

Integral must converge – fulfilled for linear 𝑓(𝑡)

𝑳 𝒇 𝒕 = 𝑭 𝒔 = න
𝟎

∞

𝒇 𝒕 𝒆−𝒔𝒕𝒅𝒕 𝑠 ≔ 𝜎 + 𝑗𝜔; 𝑓 𝑡 = 0, 𝑡 < 0
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Laplace Transform 

ℒ 𝑓 𝑡 = F 𝑠 = න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

𝑓 𝑡 = 𝑎

ℒ 𝑎 = 0׬
∞
𝑎 ⋅ 𝑒−𝑠𝑡𝑑𝑡 = 𝑎 ⋅ 0׬

∞
𝑒−𝑠𝑡𝑑𝑡

ℒ 𝑎 = 𝑎 ⋅ −
1

𝑠
⋅ 𝑒−𝑠𝑡

0

∞
= 𝑎 ⋅ 0 − −

1

𝑠
⋅ 1

ℒ 𝑎 =
𝑎

𝑠
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Laplace Transform 

𝑓 𝑡 = 𝑎

ℒ 𝑎 = 0׬
∞
𝑎 ⋅ 𝑒−𝑠𝑡𝑑𝑡 = 𝑎 ⋅ 0׬

∞
𝑒−𝑠𝑡𝑑𝑡

ℒ 𝑎 = 𝑎 ⋅ −
1

𝑠
⋅ 𝑒−𝑠𝑡

0

∞
= 𝑎 ⋅ 0 − −

1

𝑠
⋅ 1

ℒ 𝑎 =
𝑎

𝑠

ℒ 𝑓 𝑡 = F 𝑠 = න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡
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Laplace Transformation of  𝑓 𝑡 = 𝑡

𝑓 𝑡 = 𝑡

ℒ 𝑡 = 0׬
∞
𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

0׬
∞
𝑢 𝑡 ⋅ 𝑣′ 𝑡 𝑑𝑡 = 𝑢 𝑡 ⋅ 𝑣 𝑡 ȁ0

∞ − 0׬
∞
𝑢′ 𝑡 ⋅ 𝑣 𝑡 𝑑𝑡

ℒ 𝑓 𝑡 = F 𝑠 = න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

Integration by parts
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Laplace Transformation of  𝑓 𝑡 = 𝑡

𝑓 𝑡 = 𝑡

ℒ 𝑡 = 0׬
∞
𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

0׬
∞
𝑢 𝑡 ⋅ 𝑣′ 𝑡 𝑑𝑡 = 𝑢 𝑡 ⋅ 𝑣 𝑡 ȁ0

∞ − 0׬
∞
𝑢′ 𝑡 ⋅ 𝑣 𝑡 𝑑𝑡

ℒ 𝑓 𝑡 = F 𝑠 = න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

𝑢 𝑡 = 𝑡, 𝑢′ 𝑡 = 1 𝑣′(𝑡) = 𝑒−𝑠𝑡, 𝑣 𝑡 = −
1

𝑠
⋅ 𝑒−𝑠𝑡

Integration by parts
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Laplace Transformation of  𝑓 𝑡 = 𝑡

𝑓 𝑡 = 𝑡

ℒ 𝑡 = 0׬
∞
𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡 𝟎׬

∞
𝒖 𝒕 ⋅ 𝒗′ 𝒕 𝒅𝒕 = 𝒖 𝒕 ⋅ 𝒗 𝒕 ȁ𝟎

∞ − 𝟎׬
∞
𝒖′ 𝒕 ⋅ 𝒗 𝒕 𝒅𝒕

ℒ 𝑡 = 𝑡 ⋅ −
1

𝑠
⋅ 𝑒−𝑠𝑡

0

∞
− 0׬

∞
1 ⋅ −

1

𝑠
⋅ 𝑒−𝑠𝑡 𝑑𝑡

ℒ 𝑡 = 0 − 0 −
1

𝑠2
⋅ 𝑒−𝑠𝑡

0

∞
= 0 − 0 −

1

𝑠2
=

1

𝑠2

ℒ 𝑓 𝑡 = F 𝑠 = න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡

𝑢 𝑡 = 𝑡, 𝑢′ 𝑡 = 1

𝑣′ 𝑡 = 𝑒−𝑠𝑡 , 𝑣 𝑡 = −
1

𝑠
⋅ 𝑒−𝑠𝑡
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Laplace Transformation of ሶ𝑓(𝑡)

Laplace transform of the time derivative ሶ𝑓(𝑡)

ℒ ሶ𝑓 𝑡 = 0׬
∞
𝑒−𝑠𝑡

𝑑𝑓

𝑑𝑡
𝑑𝑡 =

න
𝟎

∞

𝒖 𝒕 ⋅ 𝒗′ 𝒕 𝒅𝒕 = 𝒖 𝒕 ⋅ 𝒗 𝒕 ቚ
𝟎

∞
−න

𝟎

∞

𝒖′ 𝒕 ⋅ 𝒗 𝒕 𝒅𝒕
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Laplace Transformation of ሶ𝑓(𝑡)

Laplace transform of the time derivative ሶ𝑓(𝑡)

ℒ ሶ𝑓 𝑡 = 0׬
∞
𝑒−𝑠𝑡

𝑑𝑓

𝑑𝑡
𝑑𝑡 = 𝑒−𝑠𝑡𝑓 𝑡 ȁ0

∞ − 0׬
∞
−𝑠 ⋅ 𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡

Assumption: lim
𝑡→∞

𝑒−𝑠𝑡𝑓 𝑡 → 0

ℒ ሶ𝑓 𝑡 = 𝑠න
0

∞

𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 − 𝑓 0 = 𝑠 ⋅ 𝐹 𝑠 − 𝑓 0

න
𝟎

∞

𝒖 𝒕 ⋅ 𝒗′ 𝒕 𝒅𝒕 = 𝒖 𝒕 ⋅ 𝒗 𝒕 ቚ
𝟎

∞
−න

𝟎

∞

𝒖′ 𝒕 ⋅ 𝒗 𝒕 𝒅𝒕
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Laplace Transformation of 0׬
𝑡
𝑓 𝑡 𝑑𝑡

Laplace transform of ׬
0

𝑡
𝑓 𝑡 𝑑𝑡

ℒ න
0

𝑡

𝑓 𝑡 𝑑𝑡

= න
0

∞

න
0

𝑡

𝑓 𝑡 𝑑𝑡 ∙ 𝑒−𝑠𝑡 𝑑𝑡 = න
0

𝑡

𝑓 𝜏 𝑑𝜏 ∙ (−
1

𝑠
∙ 𝑒−𝑠𝑡)ȁ

∞
0

− න
0

∞

−
1

𝑠
⋅ 𝑒−𝑠𝑡 𝑓 𝑡 𝑑𝑡 =

1

𝑠
න
0

∞

𝑓 𝑡 ⋅ 𝑒−𝑠𝑡 𝑑𝑡 =
1

𝑠
𝐹(𝑠)

ℒ න
0

𝑡

𝑓 𝑡 𝑑𝑡 =
1

𝑠
𝐹(𝑠)

න
𝟎

∞

𝒖 𝒕 ⋅ 𝒗′ 𝒕 𝒅𝒕 = 𝒖 𝒕 ⋅ 𝒗 𝒕 ቚ
𝟎

∞
−න

𝟎

∞

𝒖′ 𝒕 ⋅ 𝒗 𝒕 𝒅𝒕
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Laplace Transform of f t = 𝑒−𝛼𝑡

ℒ 𝑒−𝛼𝑡 = න
0

∞

𝑒−𝛼𝑡 ∙ 𝑒−𝑠𝑡 𝑑𝑡 = න
0

∞

𝑒−(𝑠+𝛼)𝑡 𝑑𝑡 =
1

𝑠 + 𝛼

ℒ 𝑒−𝛼𝑡 =
1

𝑠 + 𝛼

Laplace Transform
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Unit Impulse Function (Dirac Delta Function)

−
𝜀

2

𝜀

2
0

1

𝜀

t

Area = 1

𝜕 𝑡 = ቊ
∞ , if 𝑡 = 0
0 , if 𝑡 ≠ 0
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Unit Step Function

𝜎 𝑡 = ቊ
0 , if 𝑡 < 0
1 , if 𝑡 ≥ 0

0 t



Robotics I: Introduction to Robotics | Chapter 0542

Laplace Transformation of δ 𝑡 and 𝜎 (𝑡)

Laplace transform of δ 𝑡

Laplace transform of 𝜎 (𝑡)

ℒ 𝜎(𝑡) = න
0

∞

𝜎(𝑡) ∙ 𝑒−𝑠𝑡 𝑑𝑡 = න
0

∞

1 ∙ 𝑒−𝑠𝑡 𝑑𝑡 = −
1

𝑠
∙ 𝑒−𝑠𝑡ȁ

∞
0

𝑠 = 𝛿 + 𝑗𝜔 ⇒ 𝑒−𝑠𝑡 = 𝑒− 𝛿+𝑗𝜔 𝑡 = 𝑒−𝛿𝑡 ∙ 𝑒−𝑗𝜔𝑡

= 𝑒−𝛿𝑡 ∙ cos𝜔𝑡 − 𝑗 sin𝜔𝑡

ℒ 𝛿 𝑡 = න
0

∞

𝛿 𝑡 ⋅ 𝑒−𝑠𝑡𝑑𝑡 = 1

Complex representation of a periodic oscillation
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Laplace Transformation

𝑒−𝛿𝑡 = ൞

0 𝑓𝑜𝑟 𝛿 > 0 ⇒ 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑒𝑠
1 𝑓𝑜𝑟 𝛿 = 0 ⇒ 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛
−∞ 𝑓𝑜𝑟 𝛿 < 0 ⇒ 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠

Laplace transform of 𝜎 𝑡 exists only for 𝛿 > 0 or 𝑅𝑒 𝑠 > 0 (right half of the 
complex plane)

s-plane

𝛿

𝜔

ℒ 𝜎(𝑡) =
1

𝑠
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Laplace Transform: Properties and Rules

Linearity 𝐿 𝛼𝑓1 𝑡 + 𝛽𝑓2 𝑡 = 𝛼𝐹1 𝑠 + 𝛽𝐹2(𝑠)

Convolution: 𝐿 𝑓1 𝑡 ∗ 𝑓2 𝑡 = 𝐹1 𝑠 ⋅ 𝐹2(𝑠)

Limit value: 𝑓 𝑡 = 0 = lim
𝑠→∞

𝑠𝐹(𝑠)

Differentiation: 𝐿
𝑑

𝑑𝑡
𝑓(𝑡) = 𝑠𝐹 𝑠 − 𝑓 0

Integration: 𝐿 𝑓׬ 𝑡 𝑑𝑡 =
1

𝑠
𝐹(𝑠)

Displacement: 𝐿 𝑓(𝑡 − 𝜏) = 𝑒−𝜏𝑠 𝐹(𝑠)

𝐿 𝑒𝛼𝑡 =
1

𝑠−𝛼
𝐿 𝑡𝑛 =

𝑛!

𝑠𝑛+1
𝑛 = 1,2 …

𝐿 sin 𝛼𝑡 =
𝛼

𝑠2+ 𝛼2
𝐿 𝑐𝑜𝑠 𝛼𝑡 =

𝑠

𝑠2+ 𝛼2
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Laplace Transform Table

Time Domain Laplace Domain

𝑓(𝑡) ℒ 𝑓 𝑡 = 𝐹(𝑠)

𝑓 𝑡 , 𝑔(𝑡) 𝐹 𝑠 , 𝐺(𝑠)

1 Τ1 𝑠

𝑒𝛼𝑡 Τ1 𝑠 − 𝛼

𝑡𝑛𝑒𝛼𝑡, 𝑛 = 1,2,… Τ𝑛! (𝑠 − 𝑎)𝑛+1

𝑡𝑛 Τ𝑛! 𝑠𝑛+1 , 𝑛 = 1,2,…

𝑡−
1
2 Τ𝜋 𝑠

sin(𝛼𝑡) Τ𝛼 (𝑠2 + 𝛼2)

cos(𝛼𝑡) Τ𝑠 (𝑠2 + 𝛼2)

sinh(𝑘𝑡) Τ𝑘 (𝑠2 − 𝑘2)

cosh(𝑘𝑡) Τ𝑠 (𝑠2 − 𝑘2)



Robotics I: Introduction to Robotics | Chapter 0546

Contents

Introduction

Fundamentals of Control

Introduction

Laplace Transform

Transfer Element

Control Loop Examples

Stability of Control Systems

Test Functions

Control Concepts for Manipulators



Robotics I: Introduction to Robotics | Chapter 0547

Transfer Elements and Transfer Function

Linear time-invariant transfer element (LTI element)

In the complex s-domain:

In the time domain:

y(t)u(t)
g(t)

Convolution rule of the Laplace transformation

𝑌 𝑠 = 𝐺 𝑠 ⋅ 𝑈(𝑠)

𝑦 𝑡 = 𝑔 𝑡 ∗ 𝑢 𝑡 = ׬
0

𝑡
𝑔 𝜏 ⋅ 𝑢 𝑡 − 𝜏 𝑑𝜏,  für 𝑡 ≥ 0

𝑮 𝒔 : Transfer function

wikipedia
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Elementary Transfer Element (1)

P-Element
Proportional Element

I-Element
Integral Element

D-Element
Derivative Element

Tt-Element
Time Delay Element
(Dead time Element)

Name Functional Relationship
K

u(t) y(t)

K
u(t) y(t)

K
u(t) y(t)

K
u(t) y(t)

Tt

Symbol

𝑦 𝑡 = 𝐾 ⋅ 𝑢(𝑡)

𝑦 𝑡 = 𝐾 ⋅ න
0

𝑡

𝑢 𝜏 𝑑𝜏

𝑦 𝑡 = 𝐾 ⋅ ሶ𝑢(𝑡)

𝑦 𝑡 = 𝐾 ⋅ 𝑢(𝑡 − 𝑇𝑡)
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Transfer Function of I-Element

I-Element
Integral Element

K
u(t) y(t)

𝑦 𝑡 = 𝐾 ⋅ න
0

𝑡

𝑢 𝜏 𝑑𝜏
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Transfer Function of I-Element

I-Element
Integral Element

K
u(t) y(t)

𝑦 𝑡 = 𝐾 ⋅ න
0

𝑡

𝑢 𝜏 𝑑𝜏

Laplace:
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Transfer Function of I-Element

K
u(t) y(t)

𝑦 𝑡 = 𝐾 ⋅ න
0

𝑡

𝑢 𝜏 𝑑𝜏

Laplace:

𝑌 𝑠 = 𝐾 ⋅
1

𝑠
⋅ 𝑈 𝑠 =

𝐾

𝑠
⋅ 𝑈(𝑠)

Example: 𝑢 𝑡 = 𝜎 𝑡 , U s =
1

𝑠
(Step function)

𝑌 𝑠 =
𝐾

𝑠
⋅
1

𝑠
=
𝐾

𝑠2
⇒ 𝑦 𝑡 = 𝐾 ⋅ 𝑡

𝐺(𝑠)

𝑓 𝑡 = 𝑡𝑛 𝐹 𝑠 = Τ𝑛! 𝑠𝑛+1

𝑛 = 1,2,…

I-Element
Integral Element
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Elementary Transfer Element (2)

S-Element
Summing Element

𝑢1(𝑡) 𝑦(𝑡)

𝑢2(𝑡)
-

Ch-Element
Characteristic Element

K
𝑢(𝑡) 𝑦(𝑡)

M-Element
Multiplication Element

K𝑢1(𝑡) 𝑦(𝑡)

𝑦 𝑡 = ±𝑢1(𝑡) ± 𝑢2(𝑡)

𝑦 𝑡 = 𝐾 ⋅ 𝑓(𝑢 𝑡 )

𝑦 𝑡 = 𝐾 ⋅ 𝑢1 𝑡 𝑢2(𝑡)

𝑢2(𝑡)

Name Functional Relationship Symbol
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Transfer Element: Rules

Transformation rules for block diagrams

𝐹2

𝑌(𝑠) = 𝐹1 𝑠 ± 𝐹2 𝑠 𝑈(𝑠)

𝑌(𝑠) = 𝐹1 𝑠 ⋅ 𝐹2 𝑠 𝑈(𝑠)

𝑌(𝑠) =
𝐹 𝑠

1 + 𝐹 𝑠
𝑈(𝑠)

𝑌 𝑠 =
𝐹1(𝑠)

1 + 𝐹1(𝑠)
⋅ 𝑈 𝑠 +

𝐹2(𝑠)

1 + 𝐹1(𝑠)
⋅ 𝑍(𝑠)

𝑈 𝑌
𝐹1

(−)+

+

ෝ=
𝑈 𝑌

𝐹1 + 𝐹2(−)

𝐹2𝐹1 𝐹1 ⋅ 𝐹2
𝑌𝑌 𝑈𝑈

ෝ=

1)

2)

𝐹
𝑈 𝑌

−

𝑈 − 𝑌

ෝ=

𝐹2
1 + 𝐹1

𝑌𝑈

3)

𝐹2
𝑍

𝐹1
𝑈 𝑌

ෝ=

𝐹

1 + 𝐹

𝐹1
1 + 𝐹1

𝑍

𝑈

𝑌
+

+
−

+4)
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Transfer Element: Rules

Transformation rules for block diagrams

𝑌(𝑠) =
𝐹 𝑠

1 + 𝐹 𝑠
𝑈(𝑠)𝐹𝑈 𝑌

−

𝑈−Y

ෝ=
𝑌𝑈

3)
𝐹

1 + 𝐹
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Transfer Element: Rules

𝑌 𝑠 = 𝐹 𝑠 ⋅ 𝑈 𝑠 − 𝑌 𝑠

𝑌 𝑠 + 𝐹 𝑠 ⋅ 𝑌 𝑠 = 𝐹 𝑠 ⋅ 𝑈 𝑠

𝑌 𝑠 ⋅ 1 + 𝐹 𝑠 = 𝐹 𝑠 ⋅ 𝑈 𝑠

𝑌(𝑠)

𝑈(𝑠)
=

𝐹(𝑠)

1 + 𝐹(𝑠)

𝑌(𝑠) =
𝐹 𝑠

1 + 𝐹 𝑠
𝑈(𝑠)𝐹𝑈 𝑌

−

𝑈−Y

ෝ=
𝑌𝑈

3)
𝐹

1 + 𝐹

Transformation rules for block diagrams
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Definition of control system

Laplace transform 

Transfer function  

Transfer element 

Recap
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Recap: Structure and Operation of a Control System

Task: 
The system output is to be influenced via the control input in such a way that a 
desired system behavior (i.e. system output) is achieved, despite a disturbance 
that is not or only partially known

Dynamical System
Dynamical Process

„Plant“Control input System output

Disturbance

u y

z y = 𝑆{u, z}
Operator, e.g. 

(differential) 

equation 
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Recap: Structure of a Control System

𝑤 Reference 𝑥𝑑 Control error

𝑦 Control Input 𝑥 System output

𝑟 Feedback 𝑧 Disturbance

Controller

𝑥

Control System

PlantController Actuator

Sensor

𝑥𝑑 𝑦

𝑧

𝑟

𝑤
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Recap: Structure of a Control System

Target value of 𝑥: 𝑥𝑠
Measurement: 𝑟 = 𝐾𝑗 𝑥 𝐾𝑗 > 0 (constant) 

Selection of reference: 𝑤 = 𝐾𝑗 𝑥𝑠
Then:      𝑥𝑑 = 𝑤 − 𝑟 = 𝐾𝑗 𝑥𝑠 − 𝐾𝑗 𝑥 = 𝐾𝑗 (𝑥𝑠 − 𝑥)

Plant
𝑥𝑑 𝑦

𝑧

𝑟

𝑥𝑤
Controller Actuator

Sensor
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Creating the Diagram of the Control Loop

From physical laws, we can derive equations (differential or 
difference equations) that describe the relationships between 
time-varying quantities of the system.

The time-varying quantities and their equations are represented 
by suitable symbols.

A block in the block diagram uniquely assigns each time response 
of the input variable to a time respones of the output variable, 
thus acting as a transfer element.
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Structure of a Control System

𝑤 Reference 𝑥𝑑 Control error

𝑦 Control Input 𝑥 System output

𝑟 Feedback 𝑧 Disturbance

Controller

𝑥

Control System

PlantController Actuator

Sensor

𝑥𝑑 𝑦

𝑧

𝑟

𝑤



Robotics I: Introduction to Robotics | Chapter 0562

Example: Velocity Control of a DC Motor

German original taken from: Regelungstechnik; O. Föllinger

Converter Motor Load
Tacho-

generator

SensorPlantActuator

Amplifier

Deviation 
analysis Controller



Robotics I: Introduction to Robotics | Chapter 0563

Armature circuit of the motor 
𝑢𝑅 = 𝑢𝐴 − 𝑒𝑀 𝑒𝑀 = Back Electromotive Force (back EMF)
𝑒𝑀 = 𝐾𝐹 ⋅ 𝜔 𝐾𝐹 = Field constant

𝑢𝑅 = 𝑢𝐴 − 𝑒𝑀 = 𝑅𝐴 ⋅ 𝑖𝐴 +𝐿𝐴 ⋅ ሶ𝑖𝐴 →
𝐿𝐴

𝑅𝐴
ሶ𝑖𝐴 + 𝑖𝐴 =

1

𝑅𝐴
𝑢𝐴

Mechanical movement of the armature under load
𝐽 ⋅ ሶ𝜔 = 𝑀𝐸 𝐽 = Moment of inertia of armature and load

𝑀𝐸 = Effective torque

𝑀𝐸 = 𝑀𝐴 −𝑀𝐿 𝑀𝐴 = Armature torque
𝑀𝐿 = Load torque of the motor

𝑀𝐴 = 𝐾𝐹 ⋅ 𝑖𝐴

Power converter:  𝑇𝑆𝑇 ⋅ ሶ𝑢𝐴 + 𝑢𝐴 = 𝐾𝑆𝑇 ⋅ 𝑢𝐺

Electrical amplifier: 𝑢𝐺 = 𝐾𝑉 ⋅ 𝑢𝐷

Speedometer generator: 𝑢𝐽 = 𝐾𝐽 ⋅ 𝜔

Physical Laws: Velocity Control Equations
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Armature circuit of the motor 
𝑢𝑅 = 𝑢𝐴 − 𝑒𝑀 𝑒𝑀 = Opposing EMF
𝑒𝑀 = 𝐾𝐹 ⋅ 𝜔 𝐾𝐹 = Field constant

𝑢𝑅 = 𝑢𝐴 − 𝑒𝑀 = 𝑅𝐴 ⋅ 𝑖𝐴 +𝐿𝐴 ⋅ ሶ𝑖𝐴 →
𝐿𝐴

𝑅𝐴
ሶ𝑖𝐴 + 𝑖𝐴 =

1

𝑅𝐴
𝑢𝐴

Mechanical movement of the armature under load
𝐽 ⋅ ሶ𝜔 = 𝑀𝐸 𝐽 = Moment of inertia of armature and load

𝑀𝐸 = Effective torque

𝑀𝐵 = 𝑀𝐴 −𝑀𝐿 𝑀𝐴 = Armature torque
𝑀𝐿 = Load torque of the motor

𝑀𝐴 = 𝐾𝐹 ⋅ 𝑖𝐴

Power converter:  𝑇𝑆𝑇 ⋅ ሶ𝑢𝐴 + 𝑢𝐴 = 𝐾𝑆𝑇 ⋅ 𝑢𝐺

Electrical amplifier: 𝑢𝐺 = 𝐾𝑉 ⋅ 𝑢𝐷

Speedometer generator: 𝑢𝐽 = 𝐾𝐽 ⋅ 𝜔

Transform D-Eq. into Ordinary Equations

Differential Equations (D-Eq.) 

How to deal with this? 

With Laplace Transform
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𝐿𝐴

𝑅𝐴
ሶ𝑖𝐴 + 𝑖𝐴 =

1

𝑅𝐴
𝑢𝑅

Laplace Transform

ℒ ሶ𝑓 𝑡 = 𝑠 0׬
∞
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 − 𝑓 0 = 𝑠 ⋅ 𝐹 𝑠 − 𝑓 0

ℒ ሶ𝑖𝐴 𝑡 = 𝑠 𝐼𝐴 𝑠 − 𝑖𝐴 0 𝑖𝐴 0 = 0ℒ
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𝐿𝐴

𝑅𝐴
ሶ𝑖𝐴 + 𝑖𝐴 =

1

𝑅𝐴
𝑢𝑅

𝐿𝐴

𝑅𝐴
𝑠 ⋅ 𝐼𝐴 𝑠 + 𝐼𝐴 𝑠 =

1

𝑅𝐴
𝑈𝑅 𝑠

(
𝐿𝐴

𝑅𝐴
⋅ 𝑠 + 1) ⋅ 𝐼𝐴 𝑠 =

1

𝑅𝐴
𝑈𝑅 𝑠 → 𝐼𝐴 𝑠 =

1

𝑅𝐴

1+
𝐿𝐴
𝑅𝐴

⋅𝑠
⋅ 𝑈𝑅 𝑠

Laplace Transform

ℒ ሶ𝑓 𝑡 = 𝑠 0׬
∞
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 − 𝑓 0 = 𝑠 ⋅ 𝐹 𝑠 − 𝑓 0

ℒ ሶ𝑖𝐴 𝑡 = 𝑠 𝐼𝐴 𝑠 − 𝑖𝐴 0 𝑖𝐴 0 = 0ℒ

𝐼𝐴 𝑠 = 𝐺1 𝑠 ⋅ 𝑈𝑅(𝑠)

𝑮𝟏 𝒔 : Transfer function
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𝐽 ⋅ ሶ𝜔 = 𝑀𝐵

𝜔 𝑡 = ׬
1

𝐽
⋅ 𝑀𝐵 𝑡 𝑑𝑡

𝜔 𝑠 =
1

𝐽
⋅
1

𝑠
⋅ 𝑀𝐵 𝑠

Laplace Transform

ℒ න
0

𝑡

𝑓 𝑡 𝑑𝑡 =
1

𝑠
𝐹(𝑠)

ℒ

𝜔 𝑠 = 𝐺2 𝑠 ⋅ 𝑀𝐵(𝑠)
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Similarly

𝑇𝑆𝑇 ⋅ ሶ𝑢𝐴 + 𝑢𝐴 = 𝐾𝑆𝑇 ⋅ 𝑢𝐺

𝑈𝐴 𝑠 =
𝐾𝑆𝑇

1+ 𝑇𝑆𝑇 ⋅ 𝑠
⋅ 𝑈𝐺 𝑠

Laplace Transform

ℒ

𝑈𝐴 𝑠 = 𝐺3 𝑠 ⋅ 𝑈𝐺(𝑠)

ℒ ሶ𝑓 𝑡 = 𝑠 0׬
∞
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 − 𝑓 0 = 𝑠 ⋅ 𝐹 𝑠 − 𝑓 0
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Structure of a Control System

𝑤 Reference 𝑥𝑑 Control error

𝑦 Control Input 𝑥 System output

𝑟 Feedback 𝑧 Disturbance

Controller

𝑥

Control System

PlantController Actuator

Sensor

𝑥𝑑 𝑦

𝑧

𝑟

𝑤
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Velocity Controller of a DC Motor

𝐾𝑉

Comparison Controller Actuator

𝐾𝐽

𝑈𝑆

𝑈𝐽

𝑈𝐷−

𝐾𝑆𝑡
1 + 𝑇𝑆𝑡 ⋅ 𝑠𝑈𝐺 𝑈𝐴

𝑈𝑅 1/𝑅𝐴

1 +
𝐿𝐴
𝑅𝑎

⋅ 𝑠

𝐾𝐹

−

𝑒𝑀

𝐾𝐹𝐼𝐴 𝑀𝐴

𝑀𝐿

𝑀𝐵

1

𝐽 ⋅ 𝑠

𝜔

Measurement

−

Controller

Plant

𝜔 𝑠 =
1

𝐽
⋅
1

𝑠
⋅ 𝑀𝐵 𝑠

𝑀𝐵 = 𝑀𝐴 −𝑀𝐿

𝑀𝐴 = 𝐾𝐹 ⋅ 𝐼𝐴

𝐼𝐴 𝑠 =

1

𝑅𝐴

1+
𝐿𝐴
𝑅𝐴

⋅ 𝑠
⋅ 𝑈𝑅 𝑠

𝑈𝑅 = 𝑈𝐴 − 𝑒𝑀
𝑒𝑀 = 𝐾𝐹 ⋅ 𝜔

𝑈𝐴 𝑠 =
𝐾𝑆𝑇

1+ 𝑇𝑆𝑇 ⋅ 𝑠
⋅ 𝑈𝐺 𝑠

𝑈𝐺 = 𝐾𝑉 ⋅ 𝑈𝐷
𝑈𝐷 = 𝑈𝑠 − 𝑈𝐽
𝑈𝐽 = 𝐾𝐽 ⋅ 𝜔
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Velocity Control

In the joint space: Continuous specification of joint velocities 

Proportional control with factor 𝐾𝑝

ሶ𝜃𝑟 𝑡 = 𝐾𝑝 ⋅ 𝜃𝑣 𝑡 − 𝜃 𝑡

Property: if 𝜃𝑑 = 0, the joint does not move.

ሶ𝜃(𝑡)
Motor controller (𝐾𝑝) Plant

Relative Encoder

𝜃𝑣(𝑡) ሶ𝜃𝑟(𝑡)

𝜃(𝑡) −

𝜃𝑑(𝑡)
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Feedforward Control

Velocity specificiation even if 𝜃𝑑 = 0.

ሶ𝜃𝑟 𝑡 = 𝐾𝑝 ⋅ 𝜃𝑣 𝑡 − 𝜃 𝑡 + ሶ𝜃𝑑(𝑡)

ሶ𝜃(𝑡)Motor 

Controller
Plant

Relative 

Encoder

ሶ𝜃𝑟(𝑡)
𝐾𝑝

++

ሶ𝜃𝑑(𝑡)

𝜃𝑣(𝑡)

𝜃(𝑡) −

𝜃𝑑(𝑡)
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Proportional-Integral-Derivative Controller

𝐾𝑝: “virtual spring” that reduces the position error

𝐾𝑑: “virtual damper” that reduces the speed error

𝐾𝑖: reduces control deviations (offsets)

𝜏(𝑡) = 𝐾𝑝𝜃𝑑(𝑡) + 𝐾𝑖׬ 𝜃𝑑 𝑡 𝑑𝑡 + 𝐾𝑑 ሶ𝜃𝑑(𝑡)

PID-Controller

𝐾𝑝

𝐾𝑖׬ 𝑑𝑡

𝑑

𝑑𝑡 𝐾𝑑

Dynamics of the arm

+
+

+

−

𝜃𝑑(𝑡)𝜃𝑣(𝑡) 𝜏(𝑡)

𝜃(𝑡)

+
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Laplace Transform of the PID-Controller

𝜏 𝑡 = 𝐾𝑃𝜃𝑑 𝑡 + 𝐾𝐼න𝜃𝑑 𝑡 𝑑𝑡 + 𝐾𝐷
𝑑

𝑑𝑡
𝜃𝑑 𝑡

𝜏 𝑠 = 𝐾𝑃 ⋅ 𝜃𝑑 𝑠 + 𝐾𝐼
1

𝑠
⋅ 𝜃𝑑 𝑠 + 𝐾𝐷𝑠 ⋅ 𝜃𝑑 𝑠

𝜏 𝑠

𝜃𝑑 𝑠
= 𝐺 𝑠 = 𝐾𝑃 + 𝐾𝐼

1

𝑠
+ 𝐾𝐷𝑠

Output

Input
= Transfer function

ℒ
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PID-Controller

Comparison of P-, I-, PD-, PI- und PID-controllers in a control loop with
PT2-element as controlled system (linear time-invariant 2nd order delay element)

I-component: 
Compensate for control
deviations (steady-state
Accuracy

D-component: 
Dynamics (how fast)



Robotics I: Introduction to Robotics | Chapter 0577

Classic Controller Types

PID-controller (and subclasses)
Very common, due to being suitable for almost all process types, robust and can be 
realized with little effort
Characteristic equation:

𝑢 𝑡 = 𝐾𝑝 𝑒 𝑡 +
1

𝑇𝑖
න

0

𝑡

𝑒 𝜏 𝑑𝜏 + 𝑇𝑑
𝑑

𝑑𝑡
𝑒(𝑡)

P-component: favorable control characteristics
I-component: steady-state accuracy
D-component: fast regulation

with 𝑇𝑁 = integral time, 𝑇𝑉 = derivative time
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The robot dynamic model is considered in the control system

Dynamic equation for 1-DoF arm 

(planar rotation, no gravity):

𝜏 = 𝑀 ሷ𝜃 + 𝑏 ሶ𝜃

Goal: 
Fixed-point controller (keep value constant) 
realized as PD controller

Setpoint (target value): 𝜽𝒗 = 𝒄𝒐𝒏𝒔𝒕

PD-Controller
𝜏 = 𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑

𝑥

𝑦

𝜃

𝜏: Torque of the motor
𝑀: Inertia tensor
𝑏: Friction

Example: 1-DoF Torque Control
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System (Plant) 
𝜏 = 𝑀 ሷ𝜃 + 𝑏 ሶ𝜃

Controller
𝜏 = 𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑

Control error   𝜃𝑑 = 𝜃𝑣 − 𝜃 (𝜃𝑣 = 𝑐𝑜𝑛𝑠𝑡)

𝜃 = 𝜃𝑣 − 𝜃𝑑 , ሶ𝜃 = − ሶ𝜃𝑑 , ሷ𝜃 = − ሷ𝜃𝑑

Stability: 1-DoF Torque Control (1)
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System (Plant) 
𝜏 = 𝑀 ሷ𝜃 + 𝑏 ሶ𝜃

Controller
𝜏 = 𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑

Relevant for us: Control error 𝜃𝑑 = 𝜃𝑣 − 𝜃 (𝜃𝑣 = 𝑐𝑜𝑛𝑠𝑡)

𝜃 = 𝜃𝑣 − 𝜃𝑑 , ሶ𝜃 = − ሶ𝜃𝑑 , ሷ𝜃 = − ሷ𝜃𝑑

Equating gives differential equation:
𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑 = 𝑀 ሷ𝜃 + 𝑏 ሶ𝜃
𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑 = −𝑀 ሷ𝜃𝑑 − 𝑏 ሶ𝜃𝑑

𝑀 ሷ𝜃𝑑 + 𝐾𝑑 + 𝑏 ሶ𝜃𝑑 + 𝐾𝑝𝜃𝑑 = 0

ሷ𝜃𝑑 +
𝐾𝑑 + 𝑏

𝑀
⋅ ሶ𝜃𝑑 +

𝐾𝑝

𝑀
⋅ 𝜃𝑑 = 0

Stability: 1-DoF Torque Control (1)

2. Order Differential Eq.: Can be 
solved with the help of the Laplace 
transform
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Stability: 1-DoF Torque Control (Calculation)

𝜃𝑣 = 𝑐𝑜𝑛𝑠𝑡 ሶ𝜃𝑣 = 0 ሷ𝜃𝑣 = 0

𝜃𝑑 = 𝜃𝑣 − 𝜃 ሶ𝜃𝑑 = − ሶ𝜃 ሷ𝜃𝑑 = − ሷ𝜃

𝑀 ሷ𝜃 + 𝑏 ሶ𝜃 = 𝐾𝑝 𝜃𝑣 − 𝜃 + 𝐾𝑑( ሶ𝜃𝑣 − ሶ𝜃)

𝑀 − ሷ𝜃𝑑 + 𝑏 − ሶ𝜃𝑑 = 𝐾𝑝𝜃𝑑 + 𝐾𝑑 0 − − ሶ𝜃𝑑

−𝑀 ሷ𝜃𝑑 − 𝑏 ሶ𝜃𝑑 = 𝐾𝑝𝜃𝑑 + 𝐾𝑑 ሶ𝜃𝑑

−𝑀 ሷ𝜃𝑑 − 𝑏 ሶ𝜃𝑑 − 𝐾𝑑 ሶ𝜃𝑑 − 𝐾𝑝𝜃𝑑 = 0 ∣ −𝐾𝑑 ሶ𝜃𝑑 − 𝐾𝑝𝜃𝑑

−𝑀 ሷ𝜃𝑑 − (𝐾𝑑 + 𝑏) ሶ𝜃𝑑 − 𝐾𝑝𝜃𝑑 = 0 ∣ ⋅ −
1

𝑀

ሷ𝜃𝑑 +
(𝐾𝑑+𝑏)

𝑀
ሶ𝜃𝑑 +

𝐾𝑝

𝑀
𝜃𝑑 = 0
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Description of the system with D-Eq.:

ሷ𝜃𝑑 +
𝐾𝑑 + 𝑏

𝑀
⋅ ሶ𝜃𝑑 +

𝐾𝑝
𝑀

⋅ 𝜃𝑑 = 0

Harmonic oscillation:
ሷ𝜃𝑑 + 2𝜁𝜔𝑛

ሶ𝜃𝑑 + 𝜔𝑛
2 𝜃𝑑 = 0

𝜁: Damping
𝜔𝑛: Natural frequency

For 1-DoF torque control:

𝜁 =
𝑏 + 𝑲𝒅

2 𝑲𝒑𝑀
, 𝜔𝑛 =

𝑲𝒑

𝑀

Stability: 1-DoF Torque Control (2)
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Stability: 1-DoF Torque Control (3)

Harmonic oscillation:
ሷ𝜃𝑑 + 2𝜁𝜔𝑛

ሶ𝜃𝑑 + 𝜔𝑛
2 𝜃𝑑 = 0

Laplace transform:

𝑠2 ⋅ ℒ 𝜃𝑑 + 2𝜁𝜔𝑛 ⋅ 𝑠 ⋅ ℒ 𝜃𝑑 + 𝜔𝑛
2 ⋅ ℒ 𝜃𝑑 = 0

𝑠2 + 2𝜁𝜔𝑛 ⋅ 𝑠 + 𝜔𝑛
2 ⋅ ℒ 𝜃𝑑 = 0

o solutions (apart from the trivial solution ℒ 𝜃𝑑 = 0)

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1
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Harmonic oscillation:
ሷ𝜃𝑑 + 2𝜁𝜔𝑛

ሶ𝜃𝑑 + 𝜔𝑛
2 𝜃𝑑 = 0

Laplace transform:

𝑠2 ⋅ ℒ 𝜃𝑑 + 2𝜁𝜔𝑛 ⋅ 𝑠 ⋅ ℒ 𝜃𝑑 + 𝜔𝑛
2 ⋅ ℒ 𝜃𝑑 = 0

𝑠2 + 2𝜁𝜔𝑛 ⋅ 𝑠 + 𝜔𝑛
2 ⋅ ℒ 𝜃𝑑 = 0

Two solutions (apart from the trivial solution ℒ 𝜃𝑑 = 0)

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

Stability: 1-DoF Torque Control (3)
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Stability: 1-DoF Torque Control (4)

3 possible solution types:
𝜁 > 1: aperiodic solution: two different real solutions

𝜃𝑑 𝑡 = 𝑐1𝑒
𝑠1𝑡 + 𝑐2𝑒

𝑠2𝑡

Target value is (slowly) reached via the exponential function without overshooting

𝜁 = 1: critically damped response: two identical real solutions (s1,2 = −𝜁𝜔𝑛)
𝜃𝑑 𝑡 = 𝑐1 + 𝑐2𝑡 𝑒

−𝜁𝜔𝑛𝑡

The target value is reached quickly and the system just does not overshoot

𝜁 < 1: damped oscillation: two complex solutions
𝜃𝑑 𝑡 = 𝑐1 cos 𝜔𝑛𝑡 + 𝑐2 sin 𝜔𝑛𝑡 𝑒−𝜁𝜔𝑛𝑡

The system overshoots

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1
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Stability: 1-DoF Torque Control (5)

𝜔𝑡

𝜃 𝑡

𝜃 0
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Stability: 1-DoF Torque Control (6)

Damping 𝜁 is selected according to the application

Here: No overshoot desired ⇒ 𝜁 = 1

𝜁 =
𝑏 + 𝑲𝒅

2 𝑲𝒑𝑀
, 𝜔𝑛 =

𝑲𝒑

𝑀

Parameters for the PD controller:

1 =
𝑏 + 𝑲𝒅

2 𝑲𝒑𝑀
→ 2 𝑲𝒑𝑀 = 𝑏 +𝑲𝒅

𝑲𝒅 = 2 𝑲𝒑𝑀 − 𝑏 𝑥

𝑦

𝜃
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Test Functions (1)

Impulse function

Step function

Ramp function

Harmonic function

If the output variable is set to the input variable,  
the normalized step response is obtained

ℎ 𝑡 (transfer function of ^the system).

𝑥𝑒 𝑡 = −𝑥𝑒0𝐸 𝑡 ,

𝐸 𝑡 = ቊ
0, 𝑖𝑓 𝑡 ≤ 0
1 , 𝑖𝑓 𝑡 > 0

0 t
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Test Functions (2)

Step function at 𝑡 = 0

𝜃 𝑡

𝜃 0
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Manipulator Control

Block diagram of a manipulator control system

The term “manipulator control” does not only include the classic position control, 
but also includes influences of the environment. 

Force and torque control plays a special role in manipulator control.  

Trajectory
Planning Controller

Disturbance

Manipulator

Sensors 

Environment
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Joint-level Control: Cascading Controller

Manipulator = multi-body dynamic system

Independent linear single control loops for each individual joint

Manipulator
Current Control

(e.g. PI-controller)

𝐼𝐴(𝑡)

_
Speed Control

(e.g. PID-controller)
Position Control

(e.g. P-controller)

𝑞(𝑡)

__

+ +

ሶ𝑞(𝑡)
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Manipulator Control

Starting point: dynamic model

During movements, gravitational, centrifugal, Coriolis and frictional forces and 
torques act on the joints due to the inertia of the manipulator.

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝑛 ሶ𝒒, 𝒒 + 𝑔 𝒒 + 𝑅 ሶ𝒒

𝝉 : 𝑛 × 1 Vector of the general static forces and torques

𝑀(𝒒) : 𝑛 × 𝑛 Inertia matrix

𝒏 : 𝑛 × 1 Vector with centrifugal and Coriolis components

𝑔(𝒒) : 𝑛 × 1 Vector with gravitational components

𝑅 : 𝑛 × 𝑛 Diagonal matrix to describe the frictional forces

𝒒 : 𝑛 × 1 (Generalized) Joint positions of the manipulator
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Joint Space Control

Coordinate transformation: Target trajectories in joint space

Target values for the joint actuators are calculated based on the target and 
measured joint angles. 

Inverse 
Kinematics 

Controller Motor & 
Transmission

Joint 
Sensors

Manipulator
𝒙𝒕

𝒒

𝑥𝒒𝒕

-

𝒒𝒅
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Cartesian Space Control

More Complexity in the control algorithms

Direct, targeted influencing of the individual spatial coordinates

Cartesian
Position Control

Mapping with 
the inverse 

Jacobian matrix

Robot Arm, 
Actuation System

Measurement
(Sensors)

Loads: Forces, moments

𝑈𝑆

𝒑,𝒘

𝒑𝑡, 𝒘𝑡

𝒑 = Position
𝒘 = Orientation
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Path
Planning

External
Control

Coordinate
Transformation

Internal Control
(Joint Control)

Targets,
target trajectories

Target values in
task space or 
world coordinates

Joint target values,
target trajectories

Measured
joint variables

Sensor signals (force sensor, tactile sensors, camera systems)

Structure of a Robot Controller
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Control Concepts for Manipulators

Precise System Model

Assumes a-priori exact knowledge of the robot dynamics model and its 
environment

Force/Position Control

For tasks requiring interaction forces, we must consider
Hybrid force/position control

Impedance control
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Force/Position Control

Fundamental Problem
Positions and forces are tightly interconnected.

If the robot is in contact with the environment, every change in position also means 
a change in force and vice versa.

General method for solving the problem
Derive natural boundary conditions from the description of the task to be 
performed. Further boundary conditions are additionally introduced to fully describe 
the motion.
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Hybrid Force/Position Control

Pure force or position control for each Cartesian direction of the arm 
movement

Position
Controller

Manipulator

Force
Controller

Force
Sensor

Position
Sensor

Selection
Matrix

Selection
Matrix (F)

𝒙𝑡

𝒇𝑡

𝒙

𝒇

_

_

t
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Impedance Control

Control of the dynamic relationship between force and position in case of 
contact. 

Idea: 
The interaction between a robot and the environment behaves like a spring-
damper-mass system 

Force 𝑓 and motion (defined by: 𝒙(𝑡), ሶ𝒙(𝑡), ሷ𝒙(𝑡)) can be calculated via the spring-
damper mass equation:

𝑓 𝑡 = 𝑘 ⋅ 𝒙 𝑡 + 𝑑 ⋅ ሶ𝒙 𝑡 + 𝑚 ⋅ ሷ𝒙(𝑡)
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Impedance Control (2)

The impedance can be influenced via 

stiffness (𝑘), damping (𝑑) and inertia (𝑚)

Laplace Transform

𝑓 𝑡 = 𝑘 ⋅ 𝒙 𝑡 + 𝑑 ⋅ ሶ𝒙 𝑡 + 𝑚 ⋅ ሷ𝒙(𝑡)

𝐹 𝑠 = 𝑘 + 𝑑 ⋅ 𝑠 + 𝑚 ⋅ 𝑠2 ⋅ 𝑋(𝑠)

Impedance of the spring-damper-mass system

Manipulator

Interaction 
force

𝒗0 v

M
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Control of ARMAR-Robots

Joint space control

Cartesian space control

Hybrid position/force control

Impedance control: Open the fridge/dishwasher

Image-based control (visual servoing) 

Image and force-based control

Haptic-based control (haptic servoing)



Robotics I: Introduction to Robotics | Chapter 05105

Execution of Manipulation Tasks

Scene
Representation

Grasping Task
Motion 

Planning
Sensor-based

Execution
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Image-based Position Control for Grasping
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Sensors

Force/torque sensor on both wrists

Stereo camera system 

Tactile skin (upper and lower arm, shoulder)

Internal sensors (joint angle sensors)
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Position-based visual servoing

Perception

Target Pose

Joint Sensor Values

Joint 
Controller

Differential 
Kinematics
ሶ𝜃 = 𝐽+(𝜃) ሶ𝑥

Target Object Pose
Position & Orientation

(Visual Estimation)

Hand Pose
+

-

Hand Pose Position 
(Visual Estimation)

Hand Orientation
(Kinematic Approximation)


 Target 

Pose

Hand 
Pose Wrist 

Pose

Object 
Poseሶ𝜃

𝛿𝑡 = 𝑥𝑣𝑖𝑠𝑖𝑜𝑛
𝑡 − 𝑥𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐

𝑡

𝑥𝑡𝑐𝑝
𝑡+1 = 𝑥𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐

𝑡+1 + 𝛿𝑡𝑐𝑝
𝑡ሶ𝜃 = ሶ𝐽+(𝜃) ሶ𝑥

𝑥𝑡𝑎𝑟𝑔𝑒𝑡

𝑥𝑡𝑐𝑝
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Sensor-based Execution of Manipulation Tasks

Image-based execution
Model knowledge

Sensors
Force/Contact

Cameras 

Internal sensors

xhandForward 
kinematics

Visual object 
localization

Forces and 
torques

M
o

ti
o

n
 c

o
m

m
an

d
s

Se
n

so
rk

an
äl

e

R
o

b
o

t

fhand

xobject

xhand

k

Visual hand 
localization

Joint angles
[Torso, Arm]

T

T

T

Joint angles
[Torso, Head]

Camera 
calibration

v

Head 
movements
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Force Control

Impedance control

Control of the relationship between applied force and change in position (i.e. 
speed) on contact with the environment!

Speed-based simplifications: Stiffness & damping control

𝐾M

𝐾S

𝐾D

𝑭𝑆

𝒙𝑐

Δ𝐱

𝒙𝑑 𝒙𝑑

𝑭𝑆

𝑭𝑒𝑥𝑡
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Impedance Control (Open Door)
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Impedance Control (Open Door)
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Bimanual Impedance Control

Additional coupling stiffness between the end effectors

Stiffnesses must be compatible

∑𝑙
ᴋ𝑐

ᴋ𝑙 ᴋ𝑟

∑𝑙,𝑑 ∑𝑟,𝑑

∑𝑟
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Bimanual Manipulation

Decoupled manipulation
No direct coupling of the arms

Independent trajectories

Coupled manipulation
Leader-Leader: Mutual path change

Leader-Follower: Path of the follower arm changes when the leader arm is deflected
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Compliant and Rigid Coupled Manipulation

Compliant Coupled Manipulation Rigidly Coupled Manipulation
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Rigidly Coupled Manipulation
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Human-Robot Colaboration

Force/position control
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Human-Robot Colaboration
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Physical Human-Robot Interaction
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German Terminology

English German

Controller Regler

Control input Stellgröße

System output Ausgangsgröße

Disturbance Störgröße

Reference Führungsgröße

Feedback Rückführgröße

Control error Regeldifferenz

Closed loop control Regelung mit geschlossener Schleife

Open loop control Regelung mit offener Schleife (Steuerung)

Plant Strecke

Laplace transform Laplace-Transform

Torque control Drehmomentregelung
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